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Module-5: Wilson’s and Chinese Remainder Theorem

Objectives

• Wilson’s Theorem.

• Linear congruence equations.

• Chinese Remainder Theorem.

Theorem 1 (Wilson). If p is prime, then (p−1)!≡−1 (mod p).

Proof. It is easy to see the result when p= 2 or p= 3. So, assume that p> 3. Let a∈{1,2,3, . . . , p−

1}. Then, ax≡ 1 (mod p) has a unique solution x = a′ ∈ {1,2,3, . . . , p−1}. Further, verify a′ = a

holds only when a = 1 or a = p− 1. Thus, the p− 3 elements in the set {2,3, . . . , p− 2} can be

paired into (a,a′) with a 6= a′. Hence, if we multiply these p−3
2 congruences, we get

2 ·3 ·4 · · ·(p−3)(p−2)≡ 1 (mod p).

Or equivalently,

(p−2)!≡ 1 (mod p).

Now multiply above equation both sides by p−1, to get

(p−1)!≡ p−1≡−1 (mod p).

Alternate proof

By Fermat’s little theorem every element in the set {1,2,3, . . . , p−1} satisfies xp−1 ≡ 1 (mod p).

In other words

xp−1−1≡ (x−1)(x−2) · · ·(x− (p−1)) (mod p).

By substituting x = 0 in the above equation and the fact that p is an odd prime, we get the required

result.
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The converse of Wilson’s theorem is also true. That is, if (n− 1)! ≡ −1 (mod n), then n is

prime. So, suppose that n is not prime. Then n has a divisor, say d, with 1 < d < n. As 1 < d < n,

d|(n−1)!. Also, n|(n−1)!+1 and hence d|1 = [(n−1)!+1]− (n−1)!, a contradiction. Thus, if

(n−1)!≡−1 (mod n), then n is prime.

Wilson’s theorem and its converse provides a necessary and sufficient condition for determining

primality. That is, an integer n > 1 is prime if and only if (n−1)!≡−1 (mod n). But this test is of

more theoretical than practical interest because as n increases, (n−1)! becomes very large.

An equation of the form ax ≡ b (mod n) is called a linear congruence, and by a solution to

such an equation we mean an integer x0 such that ax0 ≡ b (mod n). Thus, finding all integers that

satisfy ax ≡ b (mod n) is identical with that of obtaining all solutions of the linear Diophantine

equation ax−ny = b.

It is convenient to treat two solutions of ax≡ b (mod n) that are congruent modulo n as being

“equal ” even though they are not equal in the usual sense. For example, for 3x≡ 9 (mod 12), the

solutions x = 3 and x = −9 are considered same as 3 ≡ −9 (mod 12). In short: when we refer

to the number of solutions of ax≡ b (mod n), we mean the number of incongruent integers that

satisfy the required congruence.

Theorem 2. The Linear congruence ax ≡ b (mod n) has a solution if and only if d|b, where

d = gcd(a,n). If d|b, then it has d mutually incongruent solutions modulo n.

Corollary 3. If gcd(a,n) = 1, then the linear congruence ax≡ b (mod n) has a unique solution

modulo n.

Thus, we observe that whenever gcd(a,n) = 1, the study of the linear congruence ax ≡ b

(mod n) reduces to finding the value of a−1 (mod n) as x0 = ba−1 (mod n) is the solution of

ax≡ b (mod n).

Theorem 4 (Chinese Remainder Theorem). Let n1,n2, . . . ,nr be positive integers such that gcd(ni,n j)=
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1 for i 6= j. Then, the system of linear congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ar (mod nr)

has a simultaneous solution, which is unique modulo the integer M = n1n2 · · ·nr.

Proof. 1. Let Ni =
M
ni

for 1≤ i≤ r. Then, N1 = n2n3 · · ·nr,N2 = n1n3 · · ·nr, . . . ,Nr = n1n2 · · ·nr−1.

2. Observe that for 1≤ k ≤ r, gcd(Nk,nk) = 1. Hence, for each k, there exists xk with 1≤ xk ≤

nk−1 such that Nkxk ≡ 1 (mod nk).

3. Now verify that x̄ = a1N1x1 +a2N2x2 +a3N3x3 + · · ·+arNrxr is the required solution.

4. Uniqueness: Let x′ be another solution. Then x̄≡ ak (mod nk) and x′ ≡ ak (mod nk) holds

for 1≤ k≤ r. Hence, nk|x̄−x′, for 1≤ k≤ r. But, n1,n2, . . . ,nr are relatively prime and hence

M = n1n2 · · ·nk divides x̄− x′.

Note that if x0 is a solution then so is x0 +Mt for all t ∈ Z. When n1,n2, . . . ,nr are pair wise

co-prime then the solutions form a single congruence class modulo M, namely [x0]M. Otherwise,

they are the union of several congruence classes or none.

Example 5. Show that there is no x for which both x≡ 29 (mod 52) and x≡ 19 (mod 72) holds.

Solution:Note that the congruence x≡ 29 (mod 52) is equivalent to the simultaneous congruences

x≡ 1 (mod 4) and x≡ 3 (mod 13).

Similarly, the congruence x≡ 19 (mod 72) is equivalent to x≡ 1 (mod 9) and x≡ 3 (mod 8).

Now, it is easy to check that the congruences x ≡ 1 (mod 4) and x ≡ 3 (mod 8) can’t happen

simultaneously.
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Example 6. Solve x≡ 1 (mod 9) and x≡ 1 (mod 6).

Solution:Clearly x = 1,19 and 37 satisfy the equations. So, is 1+54t,19+54t and 37+54t for all

t ∈ Z. In other words the solution set is [1]54∪ [19]54∪ [37]54.

Example 7. Solve

x ≡ 1 (mod 5)

x ≡ 2 (mod 6)

x ≡ 3 (mod 7)

Solution:Note that M = 5×6×7 = 210 and xi is chosen so that Nixi ≡ 1 (mod ni). Now, we fill

the following table to get the required answer:

Sl. No. ai ni Ni xi Nixi ≡ 1 (mod ni) a1N1x1

1 1 5 n2 ·n3 = 42 3 42×3≡ 1 (mod 5) 126

2 2 6 n1 ·n3 = 35 5 35×5≡ 1 (mod 6) 350

3 3 7 n1 ·n2 = 30 4 30×4≡ 1 (mod 7) 360

Sum 836

Thus, the required solution is x ≡ 836 (mod 210). Or equivalently, x = 206 is the required

solution. In other words, 206 is the smallest solution. The general solution is 206+210t or the

solution set corresponds to the unique congruence class [206]210.

Example 8. Solve

x ≡ 3 (mod 5)

x ≡ 6 (mod 7)

x ≡ 4 (mod 11)

Solution:We fill the following table:
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Sl. No. ai ni Ni xi Nixi ≡ 1 (mod ni) a1N1x1

1 3 5 n2 ·n3 = 77 3 77×3≡ 1 (mod 5) 693

2 6 7 n1 ·n3 = 55 6 55×6≡ 1 (mod 7) 1980

3 4 11 n1 ·n2 = 35 6 35×6≡ 1 (mod 7) 840

Sum 3513

Since

3513≡ 48 (mod 385),

hence 48 is the smallest solution. Every other solution belongs to the congruence class [48]385.

Few Comments on Chinese Remainder Theorem:

1. Let us take a fixed set of positive integers n1,n2, . . . ,nr that are relatively prime in pairs, with

product M.

2. Note that we have chosen ai ∈ Zi, for 1 ≤ i ≤ r. In general, ai may be any integer in a

complete residue system modulo ni, for 1≤ i≤ r.

3. Now, we defined a map f : ZM→ Zn1×Zn2×·· ·×Znr by

f (x) = (x (mod n1),x (mod n2), . . . ,x (mod nr)).

4. Then, we see that f (x+ y) = f (x)+ f (y) as x+ y (mod ni)≡ x (mod ni)+ y (mod ni), for

1≤ i≤ r.

5. Moreover, for any r-tuples (a1,a2, . . . ,ar) ∈ Zn1 ×Zn2 × ·· ·Znr , by Chinese Remainder

Theorem, we can find a unique x ∈ ZM such that

f (x) = (x (mod n1),x (mod n2), . . . ,x (mod nr)) = (a1,a2, . . . ,ar).

6. Also, we see that the number of elements in ZM and Zn1×Zn2×·· ·Znr are same. So, f is an

onto function implies that f is one-one as well. Thus, we have a one-to-one correspondence
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between the r-tuples (a1,a2, . . . ,ar) ∈ Zn1×Zn2×·· ·Znr and the complete residue system

modulo M.

7. Symbolically , the above argument can be expressed by writing

Zn1×Zn2×·· ·×Znr
∼= ZM.

The following example illustrates this correspondence:

Example 9. Let n1 = 5,n2 = 7 and M = 35 and let ci j denote the entry in the i-th row and j-th

column of the following table of size 5×7 = n1×n2. Then, ci j ≡ i (mod 5) and ci j ≡ j (mod 7).

For example, c34 = 18 as 18 = 3 (mod 5) and 18 = 4 (mod 7)), as well. So, by the Chinese

Remainder Theorem 18 corresponds to the tuple (3,4) as shown in the table.

1↔ (1,1) 16↔(1,2) 31↔ (1,3) 11↔(1,4) 26↔(1,5) 6↔ (1,6) 21↔(1,7) or (1,0)

22↔ (2,1) 2↔(2,2) 17↔ (2,3) 32↔(2,4) 12↔(2,5) 27↔(2, 6) 7↔(2,7)

8↔(3,1) 23↔ (3,2) 3↔ (3,3) 18↔ (3,4) 33↔(3,5) 13↔(3,6) 28↔ (3,7) or (3,0)

29↔(4,1) 9↔ (4,2) 24↔(4,3) 4↔(4,4) 19↔(4, 5) 34↔(4,6) 14↔ (4,7)

15↔(5,1) 30↔(5,2) 10↔(5,3) 25↔(5,4) 5↔ (5,5) 20↔(5,6) 35↔(5,7) or (0,0)


