Objectives

- Wilson's Theorem.
- Linear congruence equations.
- Chinese Remainder Theorem.

Theorem 1 (Wilson). If p is prime, then $(p-1)! \equiv -1 \pmod{p}$.

Proof. It is easy to see the result when p = 2 or p = 3. So, assume that p > 3. Let $a \in \{1, 2, 3, \dots, p - p \}$ 1}. Then, $ax \equiv 1 \pmod{p}$ has a unique solution $x = a' \in \{1, 2, 3, \dots, p-1\}$. Further, verify a' = aholds only when a = 1 or a = p - 1. Thus, the p - 3 elements in the set $\{2, 3, \dots, p - 2\}$ can be paired into (a, a') with $a \neq a'$. Hence, if we multiply these $\frac{p-3}{2}$ congruences, we get

$$2 \cdot 3 \cdot 4 \cdots (p-3)(p-2) \equiv 1 \pmod{p}.$$

Or equivalently,

$$(p-2)! \equiv 1 \pmod{p}$$

Now multiply above equation both sides by p-1, to get

$$(p-1)! \equiv p-1 \equiv -1 \pmod{p}.$$

Alternate proof

By Fermat's little theorem every element in the set $\{1, 2, 3, ..., p-1\}$ satisfies $x^{p-1} \equiv 1 \pmod{p}$. In other words

$$x^{p-1} - 1 \equiv (x-1)(x-2)\cdots(x-(p-1)) \pmod{p}$$

By substituting x = 0 in the above equation and the fact that p is an odd prime, we get the required result.

The converse of Wilson's theorem is also true. That is, if $(n-1)! \equiv -1 \pmod{n}$, then *n* is prime. So, suppose that *n* is not prime. Then *n* has a divisor, say *d*, with 1 < d < n. As 1 < d < n, d|(n-1)!. Also, n|(n-1)! + 1 and hence d|1 = [(n-1)! + 1] - (n-1)!, a contradiction. Thus, if $(n-1)! \equiv -1 \pmod{n}$, then *n* is prime.

Wilson's theorem and its converse provides a necessary and sufficient condition for determining primality. That is, an integer n > 1 is prime if and only if $(n-1)! \equiv -1 \pmod{n}$. But this test is of more theoretical than practical interest because as n increases, (n-1)! becomes very large.

An equation of the form $ax \equiv b \pmod{n}$ is called a *linear congruence*, and by a solution to such an equation we mean an integer x_0 such that $ax_0 \equiv b \pmod{n}$. Thus, finding all integers that satisfy $ax \equiv b \pmod{n}$ is identical with that of obtaining all solutions of the linear Diophantine equation ax - ny = b.

It is convenient to treat two solutions of $ax \equiv b \pmod{n}$ that are congruent modulo *n* as being "equal" even though they are not equal in the usual sense. For example, for $3x \equiv 9 \pmod{12}$, the solutions x = 3 and x = -9 are considered same as $3 \equiv -9 \pmod{12}$. In short: when we refer to the number of solutions of $ax \equiv b \pmod{n}$, we mean the number of incongruent integers that satisfy the required congruence.

Theorem 2. The Linear congruence $ax \equiv b \pmod{n}$ has a solution if and only if d|b, where $d = \gcd(a, n)$. If d|b, then it has d mutually incongruent solutions modulo n.

Corollary 3. If gcd(a,n) = 1, then the linear congruence $ax \equiv b \pmod{n}$ has a unique solution modulo *n*.

Thus, we observe that whenever gcd(a,n) = 1, the study of the linear congruence $ax \equiv b \pmod{n}$ reduces to finding the value of $a^{-1} \pmod{n}$ as $x_0 = ba^{-1} \pmod{n}$ is the solution of $ax \equiv b \pmod{n}$.

Theorem 4 (Chinese Remainder Theorem). Let n_1, n_2, \ldots, n_r be positive integers such that $gcd(n_i, n_j) =$

1 for $i \neq j$. Then, the system of linear congruences

$$x \equiv a_1 \pmod{n_1}$$
$$x \equiv a_2 \pmod{n_2}$$
$$\vdots$$
$$x \equiv a_r \pmod{n_r}$$

has a simultaneous solution, which is unique modulo the integer $M = n_1 n_2 \cdots n_r$.

Proof. 1. Let $N_i = \frac{M}{n_i}$ for $1 \le i \le r$. Then, $N_1 = n_2 n_3 \cdots n_r, N_2 = n_1 n_3 \cdots n_r, \dots, N_r = n_1 n_2 \cdots n_{r-1}$.

- 2. Observe that for $1 \le k \le r$, $gcd(N_k, n_k) = 1$. Hence, for each k, there exists x_k with $1 \le x_k \le n_k 1$ such that $N_k x_k \equiv 1 \pmod{n_k}$.
- 3. Now verify that $\bar{x} = a_1 N_1 x_1 + a_2 N_2 x_2 + a_3 N_3 x_3 + \dots + a_r N_r x_r$ is the required solution.
- 4. Uniqueness: Let x' be another solution. Then x̄ ≡ a_k (mod n_k) and x' ≡ a_k (mod n_k) holds for 1 ≤ k ≤ r. Hence, n_k |x̄ x', for 1 ≤ k ≤ r. But, n₁, n₂,..., n_r are relatively prime and hence M = n₁n₂...n_k divides x̄ x'.

Note that if x_0 is a solution then so is $x_0 + Mt$ for all $t \in \mathbb{Z}$. When $n_1, n_2, ..., n_r$ are pair wise co-prime then the solutions form a single congruence class modulo M, namely $[x_0]_M$. Otherwise, they are the union of several congruence classes or none.

Example 5. Show that there is no x for which both $x \equiv 29 \pmod{52}$ and $x \equiv 19 \pmod{72}$ holds. Solution:Note that the congruence $x \equiv 29 \pmod{52}$ is equivalent to the simultaneous congruences

$$x \equiv 1 \pmod{4}$$
 and $x \equiv 3 \pmod{13}$.

Similarly, the congruence $x \equiv 19 \pmod{72}$ is equivalent to $x \equiv 1 \pmod{9}$ and $x \equiv 3 \pmod{8}$. Now, it is easy to check that the congruences $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{8}$ can't happen simultaneously. **Example 6.** Solve $x \equiv 1 \pmod{9}$ and $x \equiv 1 \pmod{6}$.

Solution: Clearly x = 1, 19 and 37 satisfy the equations. So, is 1 + 54t, 19 + 54t and 37 + 54t for all $t \in \mathbb{Z}$. In other words the solution set is $[1]_{54} \cup [19]_{54} \cup [37]_{54}$.

Example 7. Solve

$$x \equiv 1 \pmod{5}$$
$$x \equiv 2 \pmod{6}$$
$$x \equiv 3 \pmod{7}$$

Solution:Note that $M = 5 \times 6 \times 7 = 210$ and x_i is chosen so that $N_i x_i \equiv 1 \pmod{n_i}$. Now, we fill the following table to get the required answer:

Sl. No. a_i n_i N_i x_i $N_i x_i \equiv 1 \pmod{n_i}$	
	126
$1 1 5 n_2 \cdot n_3 = 42 3 42 \times 3 \equiv 1 \pmod{5}$	126
2 2 6 $n_1 \cdot n_3 = 35$ 5 $35 \times 5 \equiv 1 \pmod{6}$	350
$3 3 7 n_1 \cdot n_2 = 30 4 30 \times 4 \equiv 1 \pmod{7}$	360
Sum	836

Thus, the required solution is $x \equiv 836 \pmod{210}$. Or equivalently, x = 206 is the required solution. In other words, 206 is the smallest solution. The general solution is 206 + 210t or the solution set corresponds to the unique congruence class $[206]_{210}$.

Example 8. Solve

$$x \equiv 3 \pmod{5}$$
$$x \equiv 6 \pmod{7}$$
$$x \equiv 4 \pmod{11}$$

Solution: We fill the following table:

Sl. No.	a _i	n _i	N _i	x _i	$N_i x_i \equiv 1 \pmod{n_i}$	$a_1N_1x_1$
1	3	5	$n_2 \cdot n_3 = 77$	3	$77 \times 3 \equiv 1 \pmod{5}$	693
2	6	7	$n_1 \cdot n_3 = 55$	6	$55 \times 6 \equiv 1 \pmod{7}$	1980
3	4	11	$n_1 \cdot n_2 = 35$	6	$35 \times 6 \equiv 1 \pmod{7}$	840
Sum						3513

Since

$$3513 \equiv 48 \pmod{385},$$

hence 48 is the smallest solution. Every other solution belongs to the congruence class [48]₃₈₅.

Few Comments on Chinese Remainder Theorem:

- 1. Let us take a fixed set of positive integers $n_1, n_2, ..., n_r$ that are relatively prime in pairs, with product *M*.
- 2. Note that we have chosen $a_i \in \mathbb{Z}_i$, for $1 \le i \le r$. In general, a_i may be any integer in a complete residue system modulo n_i , for $1 \le i \le r$.
- 3. Now, we defined a map $f : \mathbb{Z}_M \to \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$ by

 $f(x) = (x \pmod{n_1}, x \pmod{n_2}, \dots, x \pmod{n_r}).$

- 4. Then, we see that f(x+y) = f(x) + f(y) as $x+y \pmod{n_i} \equiv x \pmod{n_i} + y \pmod{n_i}$, for $1 \le i \le r$.
- 5. Moreover, for any *r*-tuples $(a_1, a_2, ..., a_r) \in \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$, by Chinese Remainder Theorem, we can find a unique $x \in \mathbb{Z}_M$ such that

$$f(x) = (x \pmod{n_1}, x \pmod{n_2}, \dots, x \pmod{n_r}) = (a_1, a_2, \dots, a_r).$$

6. Also, we see that the number of elements in \mathbb{Z}_M and $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$ are same. So, f is an onto function implies that f is one-one as well. Thus, we have a one-to-one correspondence

between the *r*-tuples $(a_1, a_2, ..., a_r) \in \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$ and the complete residue system modulo *M*.

7. Symbolically, the above argument can be expressed by writing

$$\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r} \cong \mathbb{Z}_M.$$

The following example illustrates this correspondence:

Example 9. Let $n_1 = 5, n_2 = 7$ and M = 35 and let c_{ij} denote the entry in the *i*-th row and *j*-th column of the following table of size $5 \times 7 = n_1 \times n_2$. Then, $c_{ij} \equiv i \pmod{5}$ and $c_{ij} \equiv j \pmod{7}$. For example, $c_{34} = 18$ as $18 = 3 \pmod{5}$ and $18 = 4 \pmod{7}$, as well. So, by the Chinese Remainder Theorem 18 corresponds to the tuple (3,4) as shown in the table.

$1 \leftrightarrow (1,1)$	16↔(1,2)	$31 \leftrightarrow (1,3)$	$11 \leftrightarrow (1,4)$	26↔(1,5)	$6 \leftrightarrow (1,6)$	$21 \leftrightarrow (1,7) \text{ or } (1,0)$	
$22 \leftrightarrow (2,1)$	$2 \leftrightarrow (2,2)$	$17 \leftrightarrow (2,3)$	32↔(2,4)	12↔(2,5)	27↔(2, 6)	7↔(2,7)	
8↔(3,1)	$23 \leftrightarrow (3,2)$	$3 \leftrightarrow (3,3)$	$18 \leftrightarrow (3,4)$	33↔(3,5)	13↔(3,6)	$28 \leftrightarrow (3,7) \text{ or } (3,0)$	
29↔(4,1)	$9 \leftrightarrow (4,2)$	24↔(4,3)	$4 {\leftrightarrow} (4,4)$	19↔(4, 5)	34↔(4,6)	$14 \leftrightarrow (4,7)$	
15↔(5,1)	30↔(5,2)	10↔(5,3)	25↔(5,4)	$5 \leftrightarrow (5,5)$	20↔(5,6)	$35 \leftrightarrow (5,7) \text{ or } (0,0)$	
Gater							
	r						